Graph processing applications are severely bottlenecked by memory system performance due to low data reuse and irregular memory accesses. While state-of-the-art prefetchers using Machine Learning (ML) have made great progress, they do not perform well on graph analytics applications due to phase transitions in the execution and irregular data access that is hard to predict. We propose MPGraph: a novel ML-based Prefetcher for Graph analytics. MPGraph makes three novel optimizations based on domain knowledge of graph analytics. It detects the transition of graph processing phases during execution using a novel soft detection technique, predicts memory accesses and pages using phase-specific multi-modality predictors, and prefetches using a novel chain spatio-temporal prefetching strategy. We evaluate our approach using three widely-used graph processing frameworks and a variety of graph datasets. Our approach achieves 34.17%-82.15% higher precision in phase transition detection than the KSWIN and decision tree baselines. Our predictors achieve 6.80%-16.02% higher F1-score for access prediction and 11.68%-15.41% higher accuracy-at-10 for page prediction compared with the baselines LSTM-based and vanilla attention-based models. Simulations show that MPGraph achieves on the average 87.16% (prefetch accuracy) and 73.29% (prefetch coverage), leading to 12.52%-21.23% IPC improvement. It outperforms the widely-used non-ML prefetcher BO by 7.58%-12.03%, and outperforms state-of-the-art ML-based prefetchers Voyager by 3.27%-4.42% and TransFetch by 3.73%-4.58% with respect to IPC improvement.
translated by 谷歌翻译
张量分解已成为许多数据科学应用中的重要工具。稀疏的进型张量时间Khatri-Rao产品(MTTKRP)是张量分解算法中的关键核,可将高阶现实世界大张量分解为多个矩阵。加速MTTKRP可以极大地加速张量分解过程。由于其不规则的内存访问特性,稀疏的MTTKRP是一个充满挑战的内核。由于能源效率和FPGA固有的并行性,在诸如MTTKRP等内核的现场可编程门阵列(FPGA)上实现加速器。本文探讨了在MTTKRP上设计自定义内存控制器的机会,关键挑战和方法,同时探索了这种自定义内存控制器的参数空间。
translated by 谷歌翻译
Graph Convolutional Networks (GCNs) are powerful models for learning representations of attributed graphs. To scale GCNs to large graphs, state-of-the-art methods use various layer sampling techniques to alleviate the "neighbor explosion" problem during minibatch training. We propose GraphSAINT, a graph sampling based inductive learning method that improves training efficiency and accuracy in a fundamentally different way. By changing perspective, GraphSAINT constructs minibatches by sampling the training graph, rather than the nodes or edges across GCN layers. Each iteration, a complete GCN is built from the properly sampled subgraph. Thus, we ensure fixed number of well-connected nodes in all layers. We further propose normalization technique to eliminate bias, and sampling algorithms for variance reduction. Importantly, we can decouple the sampling from the forward and backward propagation, and extend GraphSAINT with many architecture variants (e.g., graph attention, jumping connection). GraphSAINT demonstrates superior performance in both accuracy and training time on five large graphs, and achieves new state-of-the-art F1 scores for PPI (0.995) and Reddit (0.970).
translated by 谷歌翻译
Large-scale online recommendation systems must facilitate the allocation of a limited number of items among competing users while learning their preferences from user feedback. As a principled way of incorporating market constraints and user incentives in the design, we consider our objectives to be two-fold: maximal social welfare with minimal instability. To maximize social welfare, our proposed framework enhances the quality of recommendations by exploring allocations that optimistically maximize the rewards. To minimize instability, a measure of users' incentives to deviate from recommended allocations, the algorithm prices the items based on a scheme derived from the Walrasian equilibria. Though it is known that these equilibria yield stable prices for markets with known user preferences, our approach accounts for the inherent uncertainty in the preferences and further ensures that the users accept their recommendations under offered prices. To the best of our knowledge, our approach is the first to integrate techniques from combinatorial bandits, optimal resource allocation, and collaborative filtering to obtain an algorithm that achieves sub-linear social welfare regret as well as sub-linear instability. Empirical studies on synthetic and real-world data also demonstrate the efficacy of our strategy compared to approaches that do not fully incorporate all these aspects.
translated by 谷歌翻译
Pictionary, the popular sketch-based guessing game, provides an opportunity to analyze shared goal cooperative game play in restricted communication settings. However, some players occasionally draw atypical sketch content. While such content is occasionally relevant in the game context, it sometimes represents a rule violation and impairs the game experience. To address such situations in a timely and scalable manner, we introduce DrawMon, a novel distributed framework for automatic detection of atypical sketch content in concurrently occurring Pictionary game sessions. We build specialized online interfaces to collect game session data and annotate atypical sketch content, resulting in AtyPict, the first ever atypical sketch content dataset. We use AtyPict to train CanvasNet, a deep neural atypical content detection network. We utilize CanvasNet as a core component of DrawMon. Our analysis of post deployment game session data indicates DrawMon's effectiveness for scalable monitoring and atypical sketch content detection. Beyond Pictionary, our contributions also serve as a design guide for customized atypical content response systems involving shared and interactive whiteboards. Code and datasets are available at https://drawm0n.github.io.
translated by 谷歌翻译
Large pretrained Transformer-based language models like BERT and GPT have changed the landscape of Natural Language Processing (NLP). However, fine tuning such models still requires a large number of training examples for each target task, thus annotating multiple datasets and training these models on various downstream tasks becomes time consuming and expensive. In this work, we propose a simple extension of the Prototypical Networks for few-shot text classification. Our main idea is to replace the class prototypes by Gaussians and introduce a regularization term that encourages the examples to be clustered near the appropriate class centroids. Experimental results show that our method outperforms various strong baselines on 13 public and 4 internal datasets. Furthermore, we use the class distributions as a tool for detecting potential out-of-distribution (OOD) data points during deployment.
translated by 谷歌翻译
最近的AI算法是黑框模型,其决策难以解释。可解释的AI(XAI)试图通过向客户解释其AI决定,例如决定拒绝贷款申请,以解决缺乏AI的解释性和信任。普遍的智慧是,通过规定完全透明的XAI来调节AI会导致更大的社会福利。本文通过游戏理论模型对一个最大化社会福利的决策制定者,在最大化利润最大化的双重垄断竞争和异性消费者的政策制定者中挑战了这一概念。结果表明XAI调节可能是多余的。实际上,要求完全透明的XAI可能会使公司和客户变得更糟。这揭示了最大化福利和获得可解释的AI输出之间的权衡。我们还讨论了对政策制定者和公司的管理意义。
translated by 谷歌翻译
当我们对优化模型中的不确定参数进行观察以及对协变量的同时观察时,我们研究了数据驱动决策的优化。鉴于新的协变量观察,目标是选择一个决定以此观察为条件的预期成本的决定。我们研究了三个数据驱动的框架,这些框架将机器学习预测模型集成在随机编程样本平均值近似(SAA)中,以近似解决该问题的解决方案。 SAA框架中的两个是新的,并使用了场景生成的剩余预测模型的样本外残差。我们研究的框架是灵活的,并且可以容纳参数,非参数和半参数回归技术。我们在数据生成过程,预测模型和随机程序中得出条件,在这些程序下,这些数据驱动的SaaS的解决方案是一致且渐近最佳的,并且还得出了收敛速率和有限的样本保证。计算实验验证了我们的理论结果,证明了我们数据驱动的公式比现有方法的潜在优势(即使预测模型被误解了),并说明了我们在有限的数据制度中新的数据驱动配方的好处。
translated by 谷歌翻译
确定与医学实体相对应的医学文本中的跨度是许多医疗保健NLP任务的核心步骤之一,例如ICD编码,医学发现提取,医学注释上下文化等等。现有的实体提取方法依赖于医疗实体的固定词汇和有限的词汇,并且难以提取以不相交跨度为代表的实体。在本文中,我们提出了一种新的基于变压器的架构,称为OSLAT,OPEL SET LABEL COATION TRUSSSIONER,它解决了先前方法的许多局限性。我们的方法使用标签 - 注意机制来隐式学习与感兴趣的实体相关的跨度。这些实体可以作为自由文本提供,包括在OSLAT培训期间看不到的实体,即使它们是不相交的,该模型也可以提取跨度。为了测试我们方法的普遍性,我们在两个不同的数据集上训练两个单独的模型,这些数据集具有非常低的实体重叠:(1)来自HNLP的公共排放笔记数据集,以及(2)更具挑战性的专有患者文本数据集“原因”相遇”(RFE)。我们发现,应用于数据集上的OSLAT模型在应用于RFE数据集以及HNLP数据集的一部分时,在数据集上训练了基于规则和模糊字符串匹配基线,其中实体由分离跨度表示。我们的代码可以在https://github.com/curai/curai-research/tree/main/oslat上找到。
translated by 谷歌翻译
推荐系统在市场中使用时发挥了双重作用:它们可以帮助用户从大型游泳池中选择最需要的物品,并有助于将有限数量的物品分配给最想要它们的用户。尽管在许多现实世界中的推荐设置中,能力限制的流行率普遍存在,但缺乏将它们纳入这些系统设计的原则性方式。在此激励的情况下,我们提出了一个交互式框架,系统提供商可以通过机会主义探索分配来提高向用户的建议质量,从而最大程度地利用用户奖励并使用适当的定价机制尊重容量约束。我们将问题建模为低排名组合的多臂匪徒问题的实例,并在手臂上进行了选择约束。我们采用一种集成方法,使用协作过滤,组合匪徒和最佳资源分配中的技术,以提供一种算法,可证明可以实现次线性遗憾,即$ \ tilde {\ mathcal {\ sqrt {o}}(\ sqrt {\ sqrt {n+m(n+m){n+m(n+m) )rt})$ in $ t $ rounds,用于$ n $用户,$ m $项目和排名$ r $ ney奖励矩阵的问题。关于合成和现实世界数据的实证研究也证明了我们方法的有效性和性能。
translated by 谷歌翻译